Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 746
Filtrar
1.
Probiotics Antimicrob Proteins ; 15(4): 868-879, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35113319

RESUMO

Sensing of the intestinal microbiota by the host immune system is important to induce protective immune responses. Hence, modification of the gut microbiota might be able to prevent or treat allergies, mediated by proinflammatory Th2 immune responses. The aim was to investigate the ex vivo immunomodulatory effects of the synbiotics Pollagen® and Kallergen®, containing the probiotic bacterial strains Lactobacillus, Lacticaseibacillus and Bifidobacterium, in the context of grass pollen allergy. Peripheral blood mononuclear cells (PBMCs) from grass pollen-allergic patients and healthy controls were stimulated with grass pollen extract (GPE) and synbiotics and Gata3 expression and cytokine secretion analyzed. Monocyte-derived dendritic cells (MoDCs) cells were matured in the presence of GPE and synbiotics, co-cultured with autologous naïve T cells and maturation markers and cytokine secretion analyzed. GPE stimulation of PBMCs from grass pollen-allergic patients resulted in a significant higher production of the Th2 cytokines IL-4, IL-5, IL-9 and IL-13 compared to healthy controls. Gata3+CD4+ T cell induction was independent of the allergic status. The synbiotics promoted IL-10 and IFN-γ secretion and downregulated the GPE-induced Th2-like phenotype. Co-culturing naïve T cells with MoDCs, matured in the presence of GPE and synbiotics, shifted the GPE-induced Th2 cytokine release towards Th1-Th17-promoting conditions in allergic subjects. The investigated synbiotics are effective in downregulating the GPE-induced Th2 immune response in PBMCs from grass pollen-allergic patients as well as in autologous MoDC-T cell stimulation assays. In addition to increased IL-10 release, the data indicates a shift from a Th2- to a more Th1- and Th17-like phenotype.


Assuntos
Bifidobacterium , Células Dendríticas , Leucócitos Mononucleares , Rinite Alérgica Sazonal , Simbióticos , Humanos , Bifidobacterium/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Lacticaseibacillus/imunologia , Lactobacillus/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Poaceae/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Rinite Alérgica Sazonal/microbiologia , Imunomodulação/imunologia , Células Cultivadas
2.
Nat Commun ; 13(1): 975, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190561

RESUMO

There has been a surge in studies implicating a role of vaginal microbiota in spontaneous preterm birth (sPTB), but most are associative without mechanistic insight. Here we show a comprehensive approach to understand the causative factors of preterm birth, based on the integration of longitudinal vaginal microbiota and cervicovaginal fluid (CVF) immunophenotype data collected from 133 women at high-risk of sPTB. We show that vaginal depletion of Lactobacillus species and high bacterial diversity leads to increased mannose binding lectin (MBL), IgM, IgG, C3b, C5, IL-8, IL-6 and IL-1ß and to increased risk of sPTB. Cervical shortening, which often precedes preterm birth, is associated with Lactobacillus iners and elevated levels of IgM, C3b, C5, C5a and IL-6. These data demonstrate a role for the complement system in microbial-driven sPTB and provide a scientific rationale for the development of live biotherapeutics and complement therapeutics to prevent sPTB.


Assuntos
Microbiota/imunologia , Nascimento Prematuro/imunologia , Imunidade Adaptativa , Adulto , Estudos de Casos e Controles , Colo do Útero/imunologia , Feminino , Humanos , Imunidade Inata , Recém-Nascido , Lactobacillus/imunologia , Lactobacillus/isolamento & purificação , Gravidez , Nascimento Prematuro/microbiologia , Estudos Prospectivos , Vagina/imunologia , Vagina/microbiologia
3.
Nutrients ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011103

RESUMO

Elderly people are particularly vulnerable to COVID-19, with a high risk of developing severe disease and a reduced immune response to the COVID-19 vaccine. A randomized, placebo-controlled, double-blind trial to assess the effect of the consumption of the probiotic Loigolactobacillus coryniformis K8 CECT 5711 on the immune response generated by the COVID-19 vaccine in an elderly population was performed. Two hundred nursing home residents >60 yrs that had not COVID-19 were randomized to receive L. coryniformis K8 or a placebo daily for 3 months. All volunteers received a complete vaccination schedule of a mRNA vaccine, starting the intervention ten days after the first dose. Specific IgG and IgA antibody levels were analyzed 56 days after the end of the immunization process. No differences between the groups were observed in the antibody levels. During the intervention, 19 subjects had COVID-19 (11 receiving K8 vs. 8 receiving placebo, p = 0.457). Subgroup analysis in these patients showed that levels of IgG were significantly higher in those receiving K8 compared to placebo (p = 0.038). Among subjects >85 yrs that did not get COVID-19, administration of K8 tended to increase the IgA levels (p = 0.082). The administration of K8 may enhance the specific immune response against COVID-19 and may improve the COVID-19 vaccine-specific responses in elderly populations.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Avaliação Geriátrica/métodos , Imunidade/imunologia , Lactobacillus/imunologia , Probióticos/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , COVID-19/imunologia , Método Duplo-Cego , Feminino , Humanos , Masculino , SARS-CoV-2
4.
Sci Rep ; 11(1): 21691, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737363

RESUMO

We characterized two LysM domains of Limosilactobacillus fermentum, belonging to proteins Acglu (GenBank: KPH22907.1) and Pgb (GenBank: KPH22047.1) and bacterium like particles (BLP) derived from the immunomodulatory strain Lacticaseibacillus rhamnosus IBL027 (BLPs027) as an antigen display platform. The fluorescence protein Venus fused to the novel LysM domains could bind to the peptidoglycan shell of lactobacilli and resisted harsh conditions such as high NaCl and urea concentrations. Acglu with five LysM domains was a better anchor than Pgb baring only one domain. Six-week-old BALB/c mice were nasally immunized with the complex Venus-Acglu-BLPs027 at days 0, 14 and 28. The levels of specific serum IgG, IgG1 and IgG2a and the levels of total immunoglobulins (IgT) and IgA in broncho-alveolar lavage (BAL) were evaluated ten days after the last boosting. Venus-Acglu-BLPs027, nasally administered, significantly increased specific BAL IgT and IgA, and serum IgG levels. In addition, spleen cells of mice immunized with Venus-Acglu-BLPs027 secreted TNF-α, IFN-γ and IL-4 when stimulated ex vivo in a dose-dependent manner. We constructed a Gateway compatible destination vector to easily fuse the selected LysM domain to proteins of interest for antigen display to develop mucosal subunit vaccines.


Assuntos
Imunidade nas Mucosas/imunologia , Limosilactobacillus fermentum/imunologia , Limosilactobacillus fermentum/metabolismo , Adjuvantes Imunológicos , Administração Intranasal , Animais , Feminino , Imunização/métodos , Imunoglobulina A/imunologia , Lactobacillus/imunologia , Lactobacillus/metabolismo , Lacticaseibacillus rhamnosus/imunologia , Lacticaseibacillus rhamnosus/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos/imunologia , Vacinação
5.
Front Immunol ; 12: 741371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650564

RESUMO

Delivery by cesarean section (CS) is linked to an increased incidence of food allergies in children and affects early gut microbiota colonization. Furthermore, emerging evidence has connected disordered intestinal microbiota to food allergies. Here, we investigated the impact of CS on a rat model for food allergy to ovalbumin (OVA). Rats delivered by CS were found to be more responsive to OVA sensitization than vaginally born ones, displaying a greater reduction in rectal temperature upon challenge, worse diarrhea, and higher levels of OVA-specific antibodies and histamine. 16S rRNA sequencing of feces revealed reduced levels of Lactobacillus and Bifidobacterium in the CS rats. Preventative supplementation with a probiotic combination containing Lactobacillus and Bifidobacterium could protect CS rats against an allergic response to OVA, indicating that the microbiota dysbiosis contributes to CS-related response. Additionally, probiotic intervention early in life might help to rebuild aberrant Th2 responses and tight junction proteins, both of which have been linked to CS-related high allergic reactions. Taken together, this study shows that disordered intestinal microbiota plays an essential role in the pathogenesis of food allergy mediated by CS. More importantly, interventions that modulate the microbiota composition in early life are therapeutically relevant for CS-related food allergies.


Assuntos
Bifidobacterium/imunologia , Cesárea/estatística & dados numéricos , Disbiose/prevenção & controle , Hipersensibilidade Alimentar/prevenção & controle , Microbioma Gastrointestinal/imunologia , Lactobacillus/imunologia , Probióticos/administração & dosagem , RNA Ribossômico 16S/genética , Células Th2/imunologia , Alérgenos/imunologia , Animais , Bifidobacterium/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hipersensibilidade Alimentar/epidemiologia , Humanos , Imunoglobulina E/sangue , Lactobacillus/genética , Masculino , Ovalbumina/imunologia , Gravidez , Ratos , Ratos Sprague-Dawley , Junções Íntimas/metabolismo
6.
Vet Microbiol ; 259: 109134, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34087673

RESUMO

Increasing evidence shows that gut microbiota plays a critical role in host immune system development and immune regulation, thus the composition of gut microbiota may affect how individuals respond to immunizations. Currently, little evidence is available on the correlation between porcine gut microbiota and vaccine immune response. Here, we investigated the influence of gut microbiota on immune response in pigs to porcine reproductive and respiratory syndrome virus (PRRSV) vaccine. Based on the antibody levels for PRRSV, the immunized pigs were divided into three groups (high, low, and others), and followed by virulent PRRSV challenge. The comprehensive analysis of microbial composition revealed that gut microbiota was similar in the richness and diversity among different groups before immunization. After immunization, the richness and diversity of gut microbial community in the high group were still similar to the low group, although there was a decrease in community diversity overtime. Interestingly, the antibody titer was positively correlated with the abundance of Lactobacillus in gut microbiota in immunized pigs. Further analysis indicated that gut microbial composition might be correlated to the clinical parameters such as body weight and rectal temperature after virus challenge. Taken together, our findings suggest that certain specific members of gut microbiota, such as Lactobacillus may serve as a mechanism for regulating the immune response following immunization in pigs.


Assuntos
Microbioma Gastrointestinal/imunologia , Imunização/veterinária , Lactobacillus/imunologia , Lactobacillus/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Imunidade , Síndrome Respiratória e Reprodutiva Suína , Suínos , Potência de Vacina , Vacinas Virais/administração & dosagem
7.
J Immunol ; 206(9): 1991-2000, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33827895

RESUMO

Asthma is an allergic chronic respiratory disease that affects more than 300 million people around the world. Dysbiosis of intestinal commensal microbiota influences the development of asthma. Dectin-1 (gene symbol: Clec7a), a C-type lectin receptor, plays an important role in the intestinal immune homeostasis by controlling regulatory T (Treg) cell differentiation through regulation of intestinal microbiota. However, it is not clear whether intestinal immune conditions affect immune responses in other organs. In this study, we examined the effects of Dectin-1 deficiency on allergic airway inflammation (AAI). OVA-induced AAI was attenuated in Clec7a -/- mice. Treg cells were more abundant in colonic lamina propria, mesenteric lymph nodes, and bronchoalveolar lavage fluid of Clec7a -/- mice after AAI induction. Treatment with antibiotics, but not an antifungal agent, decreased the abundance of intestinal Treg cells and aggravated the symptoms of AAI in Clec7a -/- mice. Transplantation of gut microbiota from Clec7a -/- mice into antibiotic-treated hosts increased the abundance of intestinal Treg cells and ameliorated AAI. Overcolonization by Lactobacillus murinus, a Dectin-1 signaling-regulated commensal bacterium, also promoted expansion of Treg cells in the colon and suppressed lung inflammation. Depletion of Treg cells with anti-CD25 Ab eliminated the phenotypic differences between wild-type and Clec7a -/- mice in OVA-induced AAI. These observations suggest that inhibition of Dectin-1 signaling ameliorates AAI by increasing the abundance of Treg cells in lungs through modification of intestinal commensal bacteria, suggesting a role for commensal microbiota in regulating inflammation in organs other than the intestine.


Assuntos
Intestinos/imunologia , Lectinas Tipo C/deficiência , Pulmão/imunologia , Ovalbumina/imunologia , Pneumonia/imunologia , Linfócitos T Reguladores/imunologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Microbioma Gastrointestinal/imunologia , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Intestinos/microbiologia , Lactobacillus/imunologia , Lactobacillus/fisiologia , Lectinas Tipo C/genética , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Pneumonia/genética , RNA Ribossômico 16S/genética , Linfócitos T Reguladores/metabolismo
8.
Front Immunol ; 12: 647049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912172

RESUMO

Myelosuppression is the major dose-limiting toxicity of cancer chemotherapy. There have been many attempts to find new strategies that reduce myelosuppression. The dietary supplementation with lactic acid bacteria (LAB) improved respiratory innate immune response and the resistance against respiratory pathogens in immunosupressed hosts. Although LAB viability is an important factor in achieving optimal protective effects, non-viable LAB are capable of stimulating immunity. In this work, we studied the ability of oral preventive administration of viable and non-viable Lactobacillus rhamnosus CRL1505 or L. plantarum CRL1506 (Lr05, Lr05NV, Lp06V or Lp06NV, respectively) to minimize myelosuppressive and immunosuppressive effects derived from chemotherapy. Cyclophosphamide (Cy) impaired steady-state myelopoiesis in lactobacilli-treated and untreated control mice. Lr05V, Lr05NV and Lp06V treatments were the most effective to induce the early recovery of bone marrow (BM) tissue architecture, leukocytes, myeloid, pool mitotic and post-mitotic, peroxidase positive, and Gr-1Low/High cells in BM. We selected the CRL1505 strain for being the one capable of maintaining its myelopoiesis-enhancing properties in its non-viable form. Although the CRL1505 treatments do not modify the Cy ability to induce apoptosis, both increased the incorporation of BrdU in BM cells. Consequently, Lr05NV and Lr05V treatments were able to promote early recovery of LSK cells (Lin-Sca-1+c-Kit+ cells), multipotent progenitors (Lin-Sca-1+c-Kit+CD34+ cells), and myeloid cells (Gr-1+Ly6G+Ly6C- cells) with respect to the untreated Cy control. In addition, these treatments were able to increase the frequency of IL17A-producing innate lymphoid cells in the intestinal lamina propria (IL-17A+RORγt+CD4-NKp46+ cells) after Cy injection. These results were correlated with an increase in the IL-17A serum levels, a GM-CSF high expression and a CXCL12 lower expression in BM. Therefore, both Lr05V and Lr05NV treatments are able to activate beneficially the IL-17A/GM-CSF axis and accelerate the recovery of Cy-induced immunosuppression by increasing BM myeloid precursors. We demonstrated for the first time the beneficial effect of CRL1505 strain on myelopoiesis affected by a chemotherapeutic drug. Furthermore, Lr05NV could be a good and safe resource for reducing chemotherapy-induced leukopenia. The results are a starting point for future research and open up broad prospects for future applications of the immunobiotics.


Assuntos
Ciclofosfamida/toxicidade , Hospedeiro Imunocomprometido/efeitos dos fármacos , Lacticaseibacillus rhamnosus/imunologia , Lactobacillus/imunologia , Mielopoese/efeitos dos fármacos , Probióticos/administração & dosagem , Administração Oral , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Hospedeiro Imunocomprometido/imunologia , Imunossupressores/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Contagem de Leucócitos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Camundongos , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Mielopoese/imunologia
9.
Front Immunol ; 12: 664387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912191

RESUMO

There is some evidence that lactobacilli can strengthen the immune system of chickens. This study evaluated the effects of in ovo and oral administration of a lactobacilli cocktail on cytokine gene expression, antibody-mediated immune responses, and spleen cellularity in chickens. Lactobacilli were administered either in ovo at embryonic day 18, orally at days 1, 7, 14, 21, and 28 post-hatches, or a combination of both in ovo and post-hatch inoculation. On day 5 and 10 post-hatch, spleen and bursa of Fabricius were collected for gene expression and cell composition analysis. On days 14 and 21 post-hatch, birds were immunized with sheep red blood cells (SRBC) and keyhole limpet hemocyanin (KLH), and sera were collected on days 7, 14, and 21 post-primary immunization. Birds that received lactobacilli (107 CFU) via in ovo followed by weekly oral administration showed a greater immune response by enhancing antibody responses, increasing the percentage of CD4+ and CD4+CD25+ T cells in the spleen and upregulating the expression of interferon (IFN)-α, IFN-ß, interleukin (IL)-8, IL-13, and IL-18 in the spleen and expression of IFN-γ, IL-2, IL-6, IL-8, IL-12, and IL-18 in the bursa. These findings suggest that pre-and post-hatch administration of lactobacilli can modulate the immune response in newly hatched chickens.


Assuntos
Galinhas/imunologia , Imunidade Celular , Imunidade Humoral , Imunomodulação , Lactobacillus/imunologia , Probióticos/administração & dosagem , Administração Oral , Animais , Citocinas/genética , Citocinas/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica , Imunização , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Baço/imunologia , Baço/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
10.
Int Arch Allergy Immunol ; 182(9): 807-818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33882482

RESUMO

Since conventional allergy medication for asthma or allergic rhinitis (AR) can cause side effects which limit the patients' quality of life, it is of interest to find other forms of therapy. In particular, probiotic bacteria, such as Lactobacillus species, have shown anti-allergic effects in various mouse and human studies. For instance, administration of some Lactobacillus species resulted in nasal and ocular symptom relief and improvement of quality of life in children and adults suffering from rhinitis. Different changes in cytokine profiles, such as elevated Th1 and decreased Th2 cytokines, reduced allergy-related immunoglobulins and cell immigration have been found in both human and murine studies. Positive effects on patients like less activity limitations or fewer rhinitis episodes and longer periods free from asthma or rhinitis were also described following oral administration of Lactobacillus bacteria. However, it is still unclear how this type of lactic acid bacteria leads to changes in the immune system and thus inhibits the development of allergies or relieves their symptoms. This review gives an overview of current studies and draws conclusions concerning the usage of probiotic Lactobacillus strains in AR.


Assuntos
Interações Hospedeiro-Patógeno , Lactobacillus/imunologia , Interações Microbianas , Probióticos , Rinite Alérgica/etiologia , Animais , Relação Dose-Resposta Imunológica , Humanos , Imunomodulação , Imunoterapia , Interações Microbianas/imunologia , Probióticos/administração & dosagem , Rinite Alérgica/diagnóstico , Rinite Alérgica/terapia , Índice de Gravidade de Doença , Avaliação de Sintomas
11.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741626

RESUMO

Disease control in animal production systems requires constant vigilance. Historically, the application of in-feed antibiotics to control bacteria and improve performance has been a much-used approach to maintain animal health and welfare. However, the widespread use of in-feed antibiotics is thought to increase the risk of antibiotic resistance developing. Alternative methods to control disease and maintain productivity need to be developed. Live vaccination is useful in preventing colonization of mucosa-dwelling pathogens by inducing a mucosal immune response. Native poultry isolate Ligilactobacillus agilis La3 (previously Lactobacillus agilis) has been identified as a candidate for use as a live vector to deliver therapeutic proteins such as bacteriocins, phage endolysins, or vaccine antigens to the gastrointestinal tract of chickens. In this study, the complete genome sequence of L. agilis La3 was determined and transcriptome analysis was undertaken to identify highly expressed genes. Predicted promoter regions and ribosomal binding sites from constitutively expressed genes were used to construct recombinant protein expression cassettes. A series of double-crossover shuttle plasmids were constructed to facilitate rapid selectable integration of expression cassettes into the Lagilis La3 chromosome via homologous recombination. Inserts showed 100% stable integration over 100 generations without selection. A positive relationship was found between protein expression levels and the predicted strength of the promoters. Using this system, stable chromosomal expression of a Clostridium perfringens antigen, rNetB, was demonstrated without selection. Finally, two recombinant strains, Lagilis La3::P eft -rnetB and Lagilis La3::P cwah -rnetB, were constructed and characterized, and they showed potential for future application as live vaccines in chickens.IMPORTANCE Therapeutic proteins such as antigens can be used to prevent infectious diseases in poultry. However, traditional vaccine delivery by intramuscular or subcutaneous injection generally has not proven effective for mucosa-dwelling microorganisms that live within the gastrointestinal tract. Utilizing live bacteria to deliver vaccine antigens directly to the gut immune system can overcome some of the limitations of conventional vaccination. In this work, Ligilactobacillus agilis La3, an especially effective gut colonizer, has been analyzed and engineered with modular and stable expression systems to produce recombinant proteins. To demonstrate the effectiveness of the system, expression of a vaccine antigen from poultry pathogen Clostridium perfringens was monitored over 100 generations without selection and found to be completely stable. This study demonstrates the development of genetic tools and novel constitutive expression systems and further development of L. agilis La3 as a live delivery vehicle for recombinant proteins.


Assuntos
Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Expressão Gênica/imunologia , Genoma Bacteriano , Lactobacillus/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Clostridium perfringens/fisiologia , Lactobacillus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas Atenuadas/imunologia
12.
Front Immunol ; 12: 623451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679767

RESUMO

Multiple sclerosis is a chronic autoimmune disease involving the central nervous system, and shows a high disability rate. Its pathogenesis is complicated, and there is no good treatment. In recent years, with in-depth studies on the regulation of gastrointestinal flora, the relationship between the mammalian immune system and the intestinal flora has been extensively explored. Changes in the composition and structure of the gastrointestinal flora can affect the characteristics and development of the host immune system and even induce a series of central nervous system inflammation events. The occurrence and development of multiple sclerosis are closely related to the continuous destruction of the intestinal barrier caused by intestinal dysbacteriosis. In this study, we analyzed Lactobacillus acidipiscis in a mouse model of experimental autoimmune encephalomyelitis (EAE). We found that the amount of L. acidipiscis in the intestinal tract was inversely proportional to the progress of EAE development. In addition, the number of CD4+ FOXP3+ regulatory T cells in the mesenteric lymph nodes of mice increased significantly after the mice were fed with L. acidipiscis, and the differentiation of CD4+ T cells to Th1 and Th17 cells was inhibited. However, the protective effect of L. acidipiscis was lost in γδ T cell-deficient mice and hence was concluded to depend on the presence of regulatory γδ T cells in the intestinal epithelium. Moreover, including L. acidipiscis enhanced the development of Vγ1+γδ T cells but suppressed that of Vγ4+γδ T cells. In summary, our results demonstrated the ability of L. acidipiscis to induce generation of regulatory γδ T cells that suppress the development of the encephalomyelitic Th1 and Th17 cells and the progress of EAE.


Assuntos
Encefalomielite Autoimune Experimental/prevenção & controle , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Linfócitos Intraepiteliais/microbiologia , Lactobacillus/imunologia , Probióticos , Animais , Diferenciação Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Disbiose , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/microbiologia , Feminino , Genes Codificadores da Cadeia gama de Receptores de Linfócitos T , Interações Hospedeiro-Patógeno , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Lactobacillus/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/microbiologia , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/microbiologia
13.
Biochem Soc Trans ; 49(2): 617-627, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33704415

RESUMO

The human skin microbiota forms a key barrier against skin pathogens and is important in modulating immune responses. Recent studies identify lactobacilli as endogenous inhabitants of healthy skin, while inflammatory skin conditions are often associated with a disturbed skin microbiome. Consequently, lactobacilli-based probiotics are explored as a novel treatment of inflammatory skin conditions through their topical skin application. This review focuses on the potential beneficial role of lactobacilli (family Lactobacillaceae) in the skin habitat, where they can exert multifactorial local mechanisms of action against pathogens and inflammation. On one hand, lactobacilli have been shown to directly compete with skin pathogens through adhesion inhibition, production of antimicrobial metabolites, and by influencing pathogen metabolism. The competitive anti-pathogenic action of lactobacilli has already been described mechanistically for common different skin pathogens, such as Staphylococcus aureus, Cutibacterium acnes, and Candida albicans. On the other hand, lactobacilli also have an immunomodulatory capacity associated with a reduction in excessive skin inflammation. Their influence on the immune system is mediated by bacterial metabolites and cell wall-associated or excreted microbe-associated molecular patterns (MAMPs). In addition, lactobacilli can also enhance the skin barrier function, which is often disrupted as a result of infection or in inflammatory skin diseases. Some clinical trials have already translated these mechanistic insights into beneficial clinical outcomes, showing that topically applied lactobacilli can temporarily colonize the skin and promote skin health, but more and larger clinical trials are required to generate in vivo mechanistic insights and in-depth skin microbiome analysis.


Assuntos
Antibiose/imunologia , Candida albicans/imunologia , Inflamação/imunologia , Lactobacillus/imunologia , Pele/imunologia , Staphylococcus aureus/imunologia , Antibiose/fisiologia , Aderência Bacteriana/imunologia , Bacteriocinas/imunologia , Bacteriocinas/metabolismo , Candida albicans/fisiologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/microbiologia , Inflamação/microbiologia , Lactobacillus/metabolismo , Lactobacillus/fisiologia , Pele/microbiologia , Pele/patologia , Staphylococcus aureus/fisiologia
14.
Front Immunol ; 12: 653205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763087

RESUMO

Salmonella typhimurium DT104 infection causes the death of Caenorhabditis elegans, which can be prevented by certain Lactobacillus isolates. However, the molecular mechanisms of both the host response to the infection and the protection by Lactobacillus are largely unclear. The present study has investigated the life-span and gene expression of both wild-type (WT) and mutants in some key components of cell signaling in response to S. typhimurium infection and protection from Lactobacillus zeae. The results indicated that the gene expression of daf-16 in the DAF/ insulin-like growth factor (DAF/IGF) pathway, ced-3 and ced-9 in the programmed cell death (PCD) pathway, lys-7, spp-1, and abf-3 for antimicrobial peptide production, and bar-1 involved in the production of other defense molecules was all significantly upregulated when the wild-type (WT) was subjected to DT104 infection. On the contrary, the gene expression of tir-1, sek-1, and pmk-1 in the p38 mitogen-activated protein kinase (MAPK) pathway and clec-60, sod-3, and skn-1 for the production of other defense molecules was significantly suppressed by DT104. Pretreatment of the worms with L. zeae LB1 significantly upregulated the expression of almost all the tested genes except for ced-3, ced-9, abf-2, age-1, and dbl-1 compared with the nematode infected with DT104 only. Mutants defective in the cell signaling or other defense molecules of C. elegans were either more susceptible (defective in nsy-1, sek-1, pmk-1, ced-3, ced-9, skn-1, or daf-16) or more resistant (defective in age-1 or dbl-1) to DT104 infection than the WT except for the mutant defective in sod-3. Mutants defective in antimicrobial peptides (lys-7 or abf-3) were also more susceptible than the WT. In contrast, the mutant defective in spp-1 became more resistant. When all the mutants were pretreated with L. zeae LB1, five mutants that are defective in nsy-1, sek-1, pmk-1, abf-3, or lys-7 showed no response to the protection from LB1. These results suggest that L. zeae LB1 can regulate C. elegans cell signaling including the p38 MAPK pathway and downstream production of antimicrobial peptides and defense molecules to combat Salmonella infection.


Assuntos
Lactobacillus/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Probióticos/administração & dosagem , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium/imunologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Acta sci., Health sci ; 43: e52932, Feb.11, 2021.
Artigo em Inglês | LILACS | ID: biblio-1368494

RESUMO

Unravelling the efficacy of gut biome has a major impact on health. An unbalanced microbiome composition is linked to many common illnesses such as gut dysbiosis, mental deformities and immunological imbalance. An optimistic influence on the gut biome can be made by consumingprobiotics. This would stimulate neuroprotection and immunomodulation intended by heavy metals pollution. Lead is a major source of neurotoxin that can induce neural deformities. Lactobacillusspecies isolated from curd were characterized to confirm its specificity. Zebra fish was reared at standard conditions and preclinical assessment on the intensity of induced neurotoxin lead was performed. The embryo toxic assay, immunomodulation effects and animal behavioural models endorsed the consequence of neurotoxicity. Different concentrations of bacterial isolate with standard antidepressant was considered for analysing the vigour of toxicity and its influence on cognitive behaviour by novel tank diving method. The restrain in the animal behaviour was also conferred by all the test samples with a decreased bottom dwelling time which was authenticated with haematology and histopathological studies. The alterations in morphology of the lymphocytes were balanced by the treated test samples. This study paves a twofold potential of probiotic as neuroprotectant and immune modulator against heavy metal toxicity.


Assuntos
Animais , Bactérias/patogenicidade , Peixe-Zebra , Probióticos/análise , Neuroproteção/imunologia , Eixo Encéfalo-Intestino/imunologia , Chumbo/análise , Bactérias/virologia , Anormalidades Congênitas/virologia , Linfócitos/microbiologia , Metais Pesados/análise , Toxicidade , Imunomodulação/imunologia , Disbiose/microbiologia , Lactobacillus/imunologia
16.
Front Immunol ; 11: 528202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193302

RESUMO

Hormonal changes during and after pregnancy are linked with modifications in the maternal microbiota. We describe the importance of the maternal microbiota in pregnancy and examine whether changes in maternal microbiotic composition at different body sites (gut, vagina, endometrium) are associated with pregnancy complications. We analyze the likely interactions between microbiota and the immune system. During pregnancy, the gastrointestinal (gut) microbiota undergoes profound changes that lead to an increase in lactic acid-producing bacteria and a reduction in butyrate-producing bacteria. The meaning of such changes needs clarification. Additionally, several studies have indicated a possible involvement of the maternal gut microbiota in autoimmune and lifelong diseases. The human vagina has its own microbiota, and changes in vaginal microbiota are related to several pregnancy-related complications. Recent studies show reduced lactobacilli, increased bacterial diversity, and low vaginal levels of beta-defensin 2 in women with preterm births. In contrast, early and healthy pregnancies are characterized by low diversity and low numbers of bacterial communities dominated by Lactobacillus. These observations suggest that early vaginal cultures that show an absence of Lactobacillus and polymicrobial vaginal colonization are risk factors for preterm birth. The endometrium is not a sterile site. Resident endometrial microbiota has only been defined recently. However, questions remain regarding the main components of the endometrial microbiota and their impact on the reproductive tract concerning both fertility and pregnancy outcomes. A classification based on endometrial bacterial patterns could help develop a microbiota-based diagnosis as well as personalized therapies for the prevention of obstetric complications and personalized treatments through nutritional, microbiotic, or pharmaceutical interventions.


Assuntos
Microbioma Gastrointestinal/imunologia , Lactobacillus/imunologia , Nascimento Prematuro , Vagina , Feminino , Humanos , Gravidez , Nascimento Prematuro/diagnóstico , Nascimento Prematuro/imunologia , Nascimento Prematuro/microbiologia , Nascimento Prematuro/prevenção & controle , Vagina/imunologia , Vagina/microbiologia
17.
Benef Microbes ; 11(3): 269-282, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32363914

RESUMO

The ability of lactobacilli isolated from feedlot cattle environment to differentially modulate the innate immune response triggered by Toll-like receptors (TLRs) activation in bovine intestinal epithelial (BIE) cells was evaluated. BIE cells were stimulated with Lactobacillus mucosae CRL2069, Lactobacillus acidophilus CRL2074, Lactobacillus fermentum CRL2085 or Lactobacillus rhamnosus CRL2084 and challenged with heat-stable pathogen associated molecular patterns (PAMPs) from enterotoxigenic Escherichia coli (ETEC) to induce the activation of TLR4 or with polyinosinic:polycytidylic acid (poly(I:C)) to activate TLR3. Type I interferons, cytokines, chemokines and negative regulators of TLR signalling were studied by RT-PCR. L. mucosae CRL2069 significantly reduced the expression of interleukin (IL)-8 and monocyte chemoattractant protein (MCP)-1 in BIE cells in the context of TLR3 activation. L. mucosae CRL2069 also reduced the expression of tumour necrosis factor-α, IL-ß, MCP-1, and IL-8 in heat-stable ETEC PAMPs-challenged BIE cells. In addition, reduced expressions of IL-6, MCP-1, and IL-8 were found in BIE cells stimulated with L. rhamnosus CRL2084, although its effect was significantly lower than that observed for the CRL2069 strain. The reduced levels of pro-inflammatory factors in BIE cells induced by the CRL2069 and CRL2085 strains was related to their ability of increasing the expression of TLR negative regulators. L. mucosae CRL2069 significantly improved the expression of A20-binding inhibitor of NFκ-B activation 3 (ABIN-3), interleukin-1 receptor-associated kinase M (IRAK-M) and mitogen-activated protein kinase 1 (MKP-1) while L. rhamnosus CRL2084 augmented ABIN-3 expression in BIE cells. The results of this work suggest that among the studied strains, L. mucosae CRL2069 was able to regulate TLR3-mediated innate immune response and showed a remarkable capacity to modulate TLR4-mediated inflammation in BIE cells. The CRL2069 strain induce the up-regulation of three TLR negative regulators that would influence nuclear factor kB and mitogen-activated protein kinases signalling pathways while reducing the expression of pro-inflammatory cytokines and chemokines. Therefore, L. mucosae CRL2069 is an interesting immunobiotic candidate for the protection of the bovine host against TLR-mediated intestinal inflammatory damage.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Imunidade Inata , Intestinos/imunologia , Lactobacillales/imunologia , Probióticos/administração & dosagem , Receptores Toll-Like/imunologia , Animais , Bovinos , Linhagem Celular , Quimiocinas/genética , Quimiocinas/imunologia , Citocinas/genética , Citocinas/imunologia , Inflamação , Mucosa Intestinal/imunologia , Intestinos/citologia , Lactobacillales/isolamento & purificação , Lactobacillus/imunologia , Lactobacillus acidophilus/imunologia , Lacticaseibacillus rhamnosus/imunologia , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptores Toll-Like/genética
18.
Nat Commun ; 11(1): 1999, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332850

RESUMO

Emerging evidence suggests associations between the vaginal microbiota (VMB) composition, human papillomavirus (HPV) infection, and cervical intraepithelial neoplasia (CIN); however, causal inference remains uncertain. Here, we use bacterial DNA sequencing from serially collected vaginal samples from a cohort of 87 adolescent and young women aged 16-26 years with histologically confirmed, untreated CIN2 lesions to determine whether VMB composition affects rates of regression over 24 months. We show that women with a Lactobacillus-dominant microbiome at baseline are more likely to have regressive disease at 12 months. Lactobacillus spp. depletion and presence of specific anaerobic taxa including Megasphaera, Prevotella timonensis and Gardnerella vaginalis are associated with CIN2 persistence and slower regression. These findings suggest that VMB composition may be a future useful biomarker in predicting disease outcome and tailoring surveillance, whilst it may offer rational targets for the development of new prevention and treatment strategies.


Assuntos
Microbiota/imunologia , Infecções por Papillomavirus/microbiologia , Displasia do Colo do Útero/microbiologia , Neoplasias do Colo do Útero/microbiologia , Vagina/microbiologia , Adolescente , Adulto , Colo do Útero/patologia , Colo do Útero/virologia , Estudos de Coortes , DNA Bacteriano/isolamento & purificação , Feminino , Seguimentos , Gardnerella vaginalis/genética , Gardnerella vaginalis/imunologia , Gardnerella vaginalis/isolamento & purificação , Humanos , Lactobacillus/genética , Lactobacillus/imunologia , Lactobacillus/isolamento & purificação , Microbiota/genética , Estadiamento de Neoplasias , Papillomaviridae/imunologia , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/patologia , Prevotella/genética , Prevotella/imunologia , Prevotella/isolamento & purificação , RNA Ribossômico 16S/genética , Fatores de Risco , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia , Adulto Jovem , Displasia do Colo do Útero/imunologia , Displasia do Colo do Útero/patologia
19.
Sci Rep ; 10(1): 6196, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277092

RESUMO

Female genital tract (FGT) inflammation increases HIV infection susceptibility. Non-optimal cervicovaginal microbiota, characterized by depletion of Lactobacillus species and increased bacterial diversity, is associated with increased FGT cytokine production. Lactobacillus species may protect against HIV partly by reducing FGT inflammation. We isolated 80 lactobacilli from South African women with non-optimal (Nugent 4-10; n = 18) and optimal microbiota (Nugent 0-3; n = 14). Cytokine production by vaginal epithelial cells in response to lactobacilli in the presence and absence of Gardnerella vaginalis was measured using Luminex. Adhesion to vaginal epithelial cells, pH, D/L-lactate production and lactate dehydrogenase relative abundance were assessed. Lactobacilli from women with non-optimal produced less lactic acid and induced greater inflammatory cytokine production than those from women with optimal microbiota, with IL-6, IL-8, IL-1α, IL-1ß and MIP-1α/ß production significantly elevated. Overall, lactobacilli suppressed IL-6 (adjusted p < 0.001) and IL-8 (adjusted p = 0.0170) responses to G. vaginalis. Cytokine responses to the lactobacilli were inversely associated with lactobacilli adhesion to epithelial cells and D-lactate dehydrogenase relative abundance. Thus, while cervicovaginal lactobacilli reduced the production of the majority of inflammatory cytokines in response to G. vaginalis, isolates from women with non-optimal microbiota were more inflammatory and produced less lactic acid than isolates from women with optimal microbiota.


Assuntos
Gardnerella vaginalis/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Inflamação/microbiologia , Lactobacillus/imunologia , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Adolescente , Adulto , Citocinas/imunologia , Feminino , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/imunologia , Humanos , Inflamação/epidemiologia , Inflamação/imunologia , Lactobacillus/isolamento & purificação , África do Sul/epidemiologia , Vagina/imunologia , Vaginose Bacteriana/epidemiologia , Vaginose Bacteriana/imunologia , Adulto Jovem
20.
Adv Immunol ; 146: 29-56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32327152

RESUMO

Over the last decade, the interplay between the gut microbiota, the consortium of intestinal microbes that colonizes intestinal mucosal barriers, and its host immune system has been increasingly better understood. Disruption of the delicate balance between beneficial and pathogenic commensals, known as dysbiosis, contributes to a variety of chronic immunologic and metabolic diseases. Complicating this paradigm are bacterial strains that can operate paradoxically both as instigators and attenuators of inflammatory responses, depending on host background. Here, we review the role of several strains in the genus Lactobacillus within the context of autoimmune and other chronic disorders with a predominant focus on L. reuteri. While strains within this species have been shown to provide immune health benefits, they have also been demonstrated to act as a pathobiont in autoimmune-prone hosts. Beneficial functions in healthy hosts include competing with pathogenic microbes, promoting regulatory T cell development, and protecting the integrity of the gut barrier. On the other hand, certain strains can also break through a dysfunctional gut barrier, colonize internal tissues such as the spleen or liver and promote inflammatory responses in host tissues that lead to autoimmune disease. This review summarizes the manifold roles that these commensals play in the context of health and disease.


Assuntos
Doenças Autoimunes/imunologia , Doenças Autoimunes/microbiologia , Translocação Bacteriana/imunologia , Mucosa Intestinal/microbiologia , Lactobacillus/imunologia , Animais , Autoimunidade , Doença Crônica , Microbioma Gastrointestinal/imunologia , Humanos , Mucosa Intestinal/imunologia , Lactobacillus/patogenicidade , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...